Lyapunov Exponents, Singularities, and a Riddling Bifurcation
نویسندگان
چکیده
There are few examples in dynamical systems theory which lend themselves to exact computations of macroscopic variables of interest. One such variable is the Lyapunov exponent which measures the average attraction of an invariant set. This article presents .a family of noninvertible transformations of the plane for which such computations are possible. This model sheds additional insight into the notion of what it can mean for an attracting invariant set to have a riddled basin of attraction. [so03 i-9007(97)03805-2j
منابع مشابه
Normal forms of Hopf Singularities: Focus Values Along with some Applications in Physics
This paper aims to introduce the original ideas of normal form theory and bifurcation analysis and control of small amplitude limit cycles in a non-technical terms so that it would be comprehensible to wide ranges of Persian speaking engineers and physicists. The history of normal form goes back to more than one hundreds ago, that is to the original ideas coming from Henry Poincare. This tool p...
متن کاملNew Riddling Bifurcation in Asymmetric Dynamical Systems
We investigate the bifurcation mechanism for the loss of transverse stability of the chaotic attractor in an invariant subspace in an asymmetric dynamical system. It is found that a direct transition to global riddling occurs through a transcritical contact bifurcation between a periodic saddle embedded in the chaotic attractor on the invariant subspace and a repeller on its basin boundary. Thi...
متن کاملChaotic Response and Bifurcation Analysis of a Timoshenko Beam with Backlash Support Subjected to Moving Masses
A simply supported Timoshenko beam with an intermediate backlash is considered. The beam equations of motion are obtained based on the Timoshenko beam theory by including the dynamic effect of a moving mass travelling along the vibrating path. The equations of motion are discretized by using the assumed modes technique and solved using the Runge–Kutta method. The analysis methods employed in...
متن کاملTransverse instability and riddled basins in a system of two coupled logistic maps
Riddled basins denote a characteristic type of fractal domain of attraction that can arise when a chaotic motion is restricted to an invariant subspace of total phase space. An example is the synchronized motion of two identical chaotic oscillators. The paper examines the conditions for the appearance of such basins for a system of two symmetrically coupled logistic maps. We determine the regio...
متن کاملDynamical behavior and synchronization of hyperchaotic complex T-system
In this paper, we introduce a new hyperchaotic complex T-system. This system has complex nonlinear behavior which we study its dynamical properties including invariance, equilibria and their stability, Lyapunov exponents, bifurcation, chaotic behavior and chaotic attractors as well as necessary conditions for this system to generate chaos. We discuss the synchronization with certain and uncerta...
متن کامل